《反比例意义》教学反思
作为一名到岗不久的老师,我们都希望有一流的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,那么优秀的教学反思是什么样的呢?下面是小编精心整理的《反比例意义》教学反思 ,希望能够帮助到大家。
《反比例意义》教学反思 1教学过程:
一.复习旧知、铺垫引新
师:上一节课我们一起学习了正比例的意义,那么怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
生:两种相关联的量,一种量变化另一种量也随着变化,当这两种量中相对应量的比的比值一定,也就是商一定时,我们就称这两种量是成正比例的量。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,可以用式子y/x=k(一定)。
教者板书用字母表示的式子。
师:说得真好!×××你能再复述一遍吗?
生2复述。
师:那么同学们能判断下面两种量是否成正比例吗?为什么?
出示:
(1)时间一定,行驶的路程和速度
(2)除数一定,被除数和商
生1:时间一定,行驶的路程和速度成正比例。因为行驶的路程/速度=时间(一定)。
生2:除数一定,被除数和商成正比例。因为被除数/商=除数(一定).
师:在日常生活中我们经常遇到单价、数量和总价这三种量,你能说出单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
生1:这三种量有这样三种关系:单价×数量=总价、总价÷数量=单价、总价÷单价=数量。当单价一定时,总价和数量成正比例;当数量一定时,总价和单价成正比例。
师:说得真好!如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
二.交流讨论、探究新知
出示例3的表格。
师:这里有一组信息,同学们仔细看一看这里提供了哪些信息?指名一生回答。
生:这里告诉我们用60元钱去买本子时的几种可能发生的一些情况。
师:嗯!请同学们围绕这样几个问题展开讨论:(出示讨论提纲)
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
待学生讨论片刻之后师提问:谁来将刚才讨论的结果跟大家做个交流。
生:表中列举了单价和数量两种相关联的量,一个量扩大另一个量反而缩小,一个量缩小另一个量反而扩大,在变化的过程中相对应的量的乘积始终是60。我想这两种量之间就是成反比例的关系。
师:大家同意他的观点吗?
生齐:同意!
师:与正比例相比,大家觉得这样两种量有什么特征呢?
生:首先要是相关联的量,一个量变化另一个量也要跟着变化。成正比例的两个量在变化过程中比值不变,而这里的两种量在变化的过程中是积不变。
师:那我们就可以说,这两种量具有什么样的关系呢?
生:这两种量的关系就是反比例关系。
(教者根据学生的回答作相应的板书)
师:真会观察思考!
投影出示“试一试”
师:你能根据表中已有的信息将表填写完整吗?
生:每天运18吨,需要运4天;每天运12吨,需要运6天;每天运9吨,需要运8天。
师:为什么这样填?
生:每天运的吨数乘以时间要等于总吨数72吨。
师:根据表中数据,你能回答表格下面的问题吗?
生1:相对应的两个数的乘积是72。
生2:这个成绩表示的是工地要运水泥的总吨数,它们之间的关系可以用式子:每天运的吨数×天数=总吨数。
生3:每天运的吨数和需要的天数成反比例。因为每天运的吨数和需要的天数是相关联的两种量,其中一个量变化,另一个量也随着变化。在变化过程中,相对应的数量的乘积总是不变,都是72。所以,这道题中的两种量是成反比例的关系,每天运的吨数和需要的天数是成反比例的量。
师:仔细观察刚才研究的例3和“试一试”,它们有哪些共同的地方呢?
生1:它们提供的两种量都是相关联的量。一种量扩大,另一种量缩小;一种量缩小,另一种量扩大。
生2:这两道题里面的两种量的乘积都不变的。第一道题中两种量的乘积都是60,第二道题中的两种量的乘积都是72.
师:反比例的关系也可以像正比例一样用字母式子把它们的关系表示出来吗?
生:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用:x×y =k(一定)来表示。
三、巩固应用 、拓展延升
1.师:请大家把书翻到第65页,“练一练”中每袋糖果的粒数和装的袋数成反比例吗?为什么?
生:这道题中的每袋糖果的粒数和装的袋数成反比例。因为:每袋糖果的粒数和装的袋数是相关联的两重量,而且每袋糖果的粒数和装的袋数的乘积都是300。
师:你认为要判断两种量是否成反比例,要从哪几个方面来考虑。
生:一要看这两种量是否相关联,二要看相关联的两种量的乘积是否始终不变。
2.师:请大家把书翻到第68页,看书上的第六题。请大家写出几组对应的每本页数和装订本数的乘积,再比较乘积的大小。(稍等片刻)
师:谁来汇报一下你写的几组乘积,它们有什么关系?
生:我算了这样几组:10×90=900;12×75=900;15×60=900;20×45=900;25×36=900。它们的成绩相等,都等于900。
师:这个乘积表示的是什么呢?
生1:这个乘积表示的是纸的总页数。
生2:这个乘积表示的就是用来装订练习本的纸的总页数。
师:每本练习本的页数和装订的本数成反比例吗?为什么?
生:成反比例。因为每本练习本的页数和装订的本数是相关联的两种量,一种量变化的时候,另一种量也随着变化,在变化的过程中,每本练习本的页数和装订的本数的乘积保持不变。所以,每本练习本的页数和装订的本数成反比例关系。
3.师:观察第7题中的两种量,每天装配的数量和需要的时间成反比例吗?
生:每天装配的数量和需要的时间成反比例。
师:你是怎样判断的?
生:每天装配的数量和需要的时间是两种相关联的量,并且这两种相关联的量中相对应的量的积始终不变都是1600。所以每天装配的数量和需要的时间成反比例。
4.师:下面我们一起看第8题,首先请大家根据方格图中的长方形将表格填写完整,并思考表格下面两个问题。
稍等 ……此处隐藏8325个字……任务不能完成,对学生放手不够,有牵着学生走的嫌疑。
(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维。
一、把“分层”理念贯穿于整节课堂
学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。
在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。
二、关注学生的学习过程
数学学习是一个思考的过程,没有思考就没有真正的数学学习。
《反比例意义》教学反思 14(1)对教材内容安排的思考
本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高。
(2)对练习题型、题量的思考
第一堂课在教学的时候,对于课本上的练一练没有进行选择,要求学生全部解答,结果发现学生化的时间比较多,而且效果也不是特别的理想。有了上次的经验,教师做适当的补充和引导,在第二节课的时候,学生的完成情况就比较理想,时间不多效率也高。
另外,由于在课始的导入环节中的未知每本页数与装订的本书的求解就已经知道求解方法,所遇课堂学生就没有刻意的去讲解,结果从课后的练习第二题来看,学生的掌握情况不是很好,虽然有些同学已经利用的了反比例的方法解答。后来想想本堂课学习的是反比例,既然已经学习了反比例,对于课后安排的这样的习题就不应该还只是利用上节课的方法去解答,应该很好的把这堂课所学习到的知识利用起来,一来是学生进一步理解反比例,二来可以为后面学生学习利用反比例解答应用题留下伏笔。
(3)对正、反比例数量关系的书写的一点思考
在课堂上讲解:长方形的面积一定,它的长和宽。这道题是,想到三角形是否学生也能正确的解答,于是就补充了:三角形的面积一定,它的底与相应的高是不是成反比例?为什么?
这个问题的提出,使我对于为什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚为什么要用字母表示,现在想想,字母的标识其实是最能用数学语言来判断是不是成反比例,所以可以写成ah=s(一定)来说明底和高成反比例。这样学生在书写数量关系的时候,思维方法就会更明确。
《反比例意义》教学反思 15本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高,而且在课时的安排上,在学习正比例的安排了2个课时,这里只是安排了1个课时,紧随着课之后教材安排了一堂正反比例比较、综合的一堂课,对学生在出现正反比例有点模糊的时候就及时地加以纠正。
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。同时通过反比例的教学,可以进一步渗透函数思想,为学生今后学习中学数学和物理、化学打下基础。反比例的意义这部分内容是在学生理解并掌握比和比例的意义、性质的基础上进行教学的,但概念比较抽象,学习难度比较大,是六年级教学内容的一个教学重点也是一个教学难点。
在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后安排准备题正比例的判断,从中发现第3小题不成正比例,从而引入学习内容和学习目标。这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力。在学完例3后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例3的方法学习试一试,接着对例3和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过“想一想”中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
通过这节课的教学我深深的体会到要上一堂数学课难,上好一堂数学课更难,课前虽做了充分的准备,但还是存在不少问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。参与学生的探究不够。亲其师信其道,那么亲其生知其道不为过,真正融入学生才能体会学生的思想才能真正落实教学新理念。
当然,教学过程中还或多或少存在其它的问题,但有问题就有收获,在以后的教学中,认真反思,仔细分析,查找根源寻求对策,在教学的道路上不断攀登。
----------------------
上完课后,虽然看了听课老师给我的评价,但我一直在思考,学生是怎么评价的呢?在学生眼里,到底哪个地方出问题了呢?突然,灵机一动,干脆和学生一起交流一下吧,也许效果还更好呢?通过与学生交谈,让大家一起再次回顾本节课,找一找优点和不足,学生的回答很是让我惊奇,现摘录如下:
优点:
1、课堂导入新颖、有趣、有效,结尾有所创新,改变了以前“通过本节课的学习,大家有什么收获呢?”等传统方式,从而使得大家大家想学、乐学;
2、老师讲的详细,特别是讲授两种相关联的量,用通俗、简单的语言让大家一听就明白了,并且很快就可以判断出是否是两种相关联的量;
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺;
5、板书中的字体不太规范,要加强基本功的训练;
针对听课老师和学生的评价,在以后的教学中,我会发扬优点、克服不足,不断提高自己的教学水平。
文档为doc格式